Sains Malaysiana 53(9)(2024):
3197-3213
http://doi.org/10.17576/jsm-2024-5309-23
Credible Delta Gamma (Theta) Normal Value at Risk for
Assessing European Call Option Risk
(Nilai Normal Delta-Gamma (Theta) Berisiko Boleh Percaya untuk Menilai Risiko Pilihan Panggilan Eropah)
EVY SULISTIANINGSIH1,
DEDI ROSADI2,* & MAHARANI ABU BAKAR3
1Department of Mathematics, Universitas Tanjungpura. Jl. Prof. Dr.
H. Hadari Nawawi, Pontianak, 78124 Indonesia
2Department of Mathematics, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
3Department of Applied Mathematics, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu,
Malaysia
Received: 19 November 2023/Accepted: 9 July 2024
Abstract
The current
research introduces a novel risk metric called credible delta-gamma (theta)-normal Value-at-Risk (CredDGTN VaR) for the purpose of
the option risk assessment. CredDGTN VaR represents an
extension of the credible Value-at-Risk (CredVaR) framework, whereby risk assessment is conducted through the integration of CredVaR with delta-gamma(theta)-normal VaR. The present study
introduces a novel approach that is deemed suitable for evaluating the risk of a portfolio of European call
options. The proposed method takes into account the nonlinear interdependence of the market
risk factors determining the value of a European
call option, according to the Formula of Black-Scholes. The present methodology is employed to assess
simulated financial data that portrays the return of multiple assets throughout
ten investment periods. The novel approach is
additionally employed to assess the level of risk associated with a portfolio comprised of actively traded
stock options. According to Kupiec's backtesting, CredDGTN's efficacy in gauging the risk of
an option portfolio is noteworthy, as it
accurately measures the risk at 80%, 90%, and 95% confidence levels, even in cases where the profit/loss (P/L) exhibits non-normal distribution. Furthermore, the performance of CredDGTN VaR empirically
outperforms credible delta-normal VaR (CredDN VaR)
and credible delta-gamma-normal VaR (CredDGN VaR) in similar cases. Moreover, CredDN VaR, CredDGN VaR,
and CredDGTN VaR will provide equal VaR when delta and gamma are zero.
Keywords:
Greek; mixed-assets; portfolio
Abstrak
Penyelidikan ini memperkenalkan metriks risiko baharu yang dipanggil nilai normal
delta-gamma (theta) berisiko boleh percaya (CredDGTN VaR) untuk tujuan penilaian risiko pilihan. CredDGTN VaR mewakili lanjutan daripada rangka kerja Nilai Berisiko (CredVaR) boleh percaya yang mana penilaian risiko dijalankan melalui penyepaduan CredVaR dengan delta-gamma(theta)-normal VaR. Kajian ini memperkenalkan pendekatan baharu yang dianggap sesuai untuk menilai risiko portfolio pilihan panggilan Eropah. Kaedah yang dicadangkan mengambil kira kebergantungan tidak linear faktor risiko pasaran yang menentukan nilai pilihan panggilan Eropah, menurut Formula
Black-Scholes. Metodologi sedia ada digunakan untuk menilai simulasi data kewangan yang menggambarkan pulangan berbilang aset sepanjang sepuluh tempoh pelaburan. Pendekatan baharu ini digunakan untuk menilai tahap risiko yang berkaitan dengan portfolio yang terdiri daripada pilihan saham yang didagangkan secara aktif. Menurut pengiraan ke belakang Kupiec, keberkesanan CredDGTN dalam mengukur risiko portfolio pilihan patut diberi perhatian, kerana ia mengukur risiko dengan tepat pada tahap keyakinan 80%, 90% dan 95%, walaupun dalam kes keuntungan/kerugian (P/L) menunjukkan taburan bukan normal. Tambahan pula, prestasi CredDGTN VaR secara empirik mengatasi VaR delta-normal boleh percaya (CredDN VaR) dan VaR delta-gamma-normal boleh percaya (CredDGN VaR) dalam kes yang serupa. Selain itu, CredDN VaR, CredDGN VaR dan CredDGTN VaR akan memberikan VaR yang sama apabila delta dan gamma adalah sifar.
Kata kunci: Aset gabungan;
Greek; portfolio
REFERENCES
Ammann, M. & Reich, C. 2001. Var for nonlinear financial
instruments|linear approximation or full monte carlo? Financial
Markets and Portfolio Management 15: 363-378.
Britten-Jones, M. & Schaefer, S.M. 1999. Non-linear value-at-risk. Review of
Finance 2(2): 161-187.
Biihlmann, H. & Straub, E. 1970. Glaubwiirdigkeit fur schadensatze. Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker 70: 11-113.
B
hlmann, H. 1969.
Experience rating and credibility. ASTIN Bulletin: The Journal of the IAA 5(2): 157-165.
Castellacci, G. & Siclari, M.J. 2003. The practice of delta gamma
var: Implementing the quadratic portfolio model. European Journal of
Operational Research 150(3): 529-545.
Chen, R. & Yu, L. 2013. A novel nonlinear value-at-risk method for
modeling risk of option portfolio with multivariate mixture of normal
distributions. Economic Modelling 35: 796-804.
Chen, Y., Liu, Y-K. & Chen, J. 2006. Fuzzy portfolio selection
problems based on credibility theory. In Advances in Machine
Learning and Cybernetics. Lecture Notes in Computer Science, edited by
Yeung, D.S., Liu, Z.Q., Wang, X.Z. & Yan, H. Berlin, Heidelberg: Springer. 3930: 377-386.
Cui, X., Zhu, S., Sun, X. & Li, D. 2013. Nonlinear portfolio
selection using approximate parametric value-at-risk. Journal of Banking &
Finance 37(6): 2124-2139.
Date, P. & Bustreo, R. 2016. Measuring the risk of a non-linear
portfolio with fat-tailed risk factors through a probability conserving
transformation. IMA Journal of Management Mathematics 27(2): 157-180.
Diao, L. & Weng, C. 2019. Regression tree credibility model. North American
Actuarial Journal 23(2): 169-196.
Feuerverger, A. & Wong, A.C. 2000. Computation of value-at-risk for
nonlinear portfolios. Journal of Risk 3: 37-56.
Georgescu, I. & Kinnunen, J. 2013. A risk approach by credibility
theory. Fuzzy Information and Engineering 5(4): 399-416.
Kananthai, A. & Suksern, S. 2016. On the parametric interest of the
option price from the black-scholes equation. IAENG International
Journal of Applied Mathematics 46(1): 87-91.
Karimalis, E.N. & Nomikos, N.K. 2018. Measuring systemic risk in
the european banking sector: A copula covar approach. The European
Journal of Finance 24(11): 944-975.
Kupiec, P. 1995. Techniques for verifying the accuracy of risk
measurement models. The Journal of Derivatives 3(2):
73-84.
Liu, N., Chen, Y. & Liu, Y. 2018. Optimizing portfolio selection
problems under credibilistic cvar criterion. Journal of Intelligent
& Fuzzy Systems 34(1): 335-347.
Mina, J. & Ulmer, A. 1999. Delta-gamma four ways. Technical Report. https://www.msci.com/www/research-report/delta-gamma-four-ways-/018387524
Ortiz-Gracia, L. & Oosterlee, C.W. 2014. Efficient var and expected
shortfall computations for nonlinear portfolios within the delta-gamma
approach. Applied Mathematics and Computation 244: 16-31.
Pitselis, G. 2013. Quantile credibility models. Insurance: Mathematics
and Economics 52(3): 477-489.
Pitselis, G. 2016. Credible risk measures with applications in
actuarial sciences and finance. Insurance: Mathematics and Economics 70: 373-386.
Sulistianingsih, E., Rosadi, D. &
Abdurakhman. 2023. Credible delta normal value at risk for risk
evaluation of European call option. Industrial Engineering & Management
Systems 22(1): 20-30.
Sulistianingsih, E., Rosadi, D. &
Abdurakhman. 2021. Credible delta-gamma-normal value-at-risk for European call option
risk valuation. Engineering Letters 29(3): 1026-1034.
Sulistianingsih, E., Rosadi, D. & Abdurakhman. 2019. Delta normal
and delta gamma normal approximation in risk measurement of portfolio consisted
of option and stock. In AIP Conference Proceedings, AIP Publishing LLC 2192: 090011.
Sulistianingsih, E., Martha, S., Andani, W.,
Umiati, W. & Astuti, A. 2023. Application of delta gamma (theta) normal
approximation in risk measurement of AAPL's and GOLD's option. Media
Statistika 16(2): 160-169.
Topaloglou, N., Vladimirou, H. & Zenios, S.A. 2011. Optimizing
international portfolios with options and forwards. Journal of Banking &
Finance 35(12): 3188-3201.
Vercher, E. & Berm
dez, J.D. 2015.
Portfolio optimization using a credibility mean-absolute semi-deviation model. Expert Systems
with Applications 42(20): 7121-7131.
Wang, X., Xie, D., Jiang, J., Wu, X. & He, J. 2017. Value-at-risk
estimation with stochastic interest rate models for option-bond portfolios. Finance
Research Letters 21: 10-20.
Wang, Y., Chen, Y. & Liu, Y. 2016. Modeling portfolio optimization
problem by probability-credibility equilibrium risk criterion. Mathematical
Problems in Engineering 2016: 9461021.
Yang, Y., Ma, J. & Liang, Y. 2018. The research on the calculation
of barrier options under stochastic volatility models based on the exact
simulation. IAENG International Journal of Applied
Mathematics 48(3): 349-361.
Zhao, S., Lu, Q., Han, L., Liu, Y. & Hu, F. 2015. A
mean-cvar-skewness portfolio optimization model based on asymmetric laplace
distribution. Annals of Operations Research 226(1): 727-739.
Zymler, S., Kuhn, D. & Rustem, B. 2013. Worst-case value at risk of
nonlinear portfolios. Management Science 59(1): 172-188.
*Corresponding author; email: dedirosadi@gadjahmada.edu
|